探索していない通路を「-1」として表現して
スタートからゴールに到達するまで深さ優先探索で迷路を探索し、
探索した通路はスタートからの距離に数値を置き換える。
using System;
using System.Collections.Generic;
public class Maze {
public const int PATH = 0;
public const int WALL = 1;
public int width;
public int height;
public int[,] maze;
public int[,] dist;
public int[] start;
public int[] goal;
private Random random;
public Maze(int width, int height, int seed = 0) {
this.width = width;
this.height = height;
if (this.width < 5 || this.height < 5) {
Environment.Exit(0);
}
if (this.width % 2 == 0) {
this.width++;
}
if (this.height % 2 == 0) {
this.height++;
}
this.maze = new int[this.height,this.width];
for (int y = 0; y < this.height; ++y) {
for (int x = 0; x < this.width; ++x) {
this.maze[y,x] = Maze.PATH;
}
}
this.dist = new int[this.height,this.width];
for (int y = 0; y < this.height; ++y) {
for (int x = 0; x < this.width; ++x) {
this.dist[y,x] = -1;
}
}
this.start = new int[] {1, 1};
this.goal = new int[] {this.width-2, this.height-2};
this.random = new Random(seed);
}
public int[,] set_outer_wall() {
for (int y = 0; y < this.height; ++y) {
for (int x = 0; x < this.width; ++x) {
if (x == 0 || y == 0 || x == this.width-1 || y == this.height-1) {
this.maze[y,x] = Maze.WALL;
}
}
}
return this.maze;
}
public int[,] set_inner_wall() {
for (int y = 2; y < this.height-1; y += 2) {
for (int x = 2; x < this.width-1; x += 2) {
this.maze[y,x] = Maze.WALL;
}
}
return this.maze;
}
public int[,] set_maze_boutaoshi() {
int wall_x;
int wall_y;
int direction;
this.set_outer_wall();
this.set_inner_wall();
for (int y = 2; y < this.height-1; y += 2) {
for (int x = 2; x < this.width-1; x += 2) {
while (true) {
wall_x = x;
wall_y = y;
if (y == 2) {
direction = random.Next(0,4);
} else {
direction = random.Next(0,3);
}
switch (direction) {
case 0:
wall_x += 1;
break;
case 1:
wall_y +=1;
break;
case 2:
wall_x -=1;
break;
case 3:
wall_y -=1;
break;
}
if (this.maze[wall_y,wall_x] != Maze.WALL) {
this.maze[wall_y,wall_x] = Maze.WALL;
break;
}
}
}
}
return this.maze;
}
public int[,] set_start_goal(int[] start, int[] goal) {
if (this.maze[start[1],start[0]] == Maze.PATH) {
this.start = start;
}
if (this.maze[goal[1],goal[0]] == Maze.PATH) {
this.goal = goal;
}
return this.maze;
}
public int[,] set_dist_dfs(bool flag = false) {
int[] point;
int[,] x = new int[,] {{0,-1},{1,0},{0,1},{-1,0}};
Stack<int[]> stack = new Stack<int[]>();
this.dist[this.start[1],this.start[0]] = 0;
stack.Push(this.start);
while (stack.Count > 0) {
point = stack.Pop();
for (int i = 0; i < x.GetLength(0); ++i) {
if (this.maze[point[1]+x[i,1],point[0]+x[i,0]] == 0 && this.dist[point[1]+x[i,1],point[0]+x[i,0]] == -1) {
this.dist[point[1]+x[i,1],point[0]+x[i,0]] = this.dist[point[1],point[0]] + 1;
stack.Push(new int[] {point[0]+x[i,0],point[1]+x[i,1]});
}
if (flag != true) {
if (point[0]+x[i,0] == this.goal[0] && point[1]+x[i,1] == this.goal[1]) {
stack.Clear();
break;
}
}
}
}
return this.dist;
}
public int[,] set_shortest_path() {
int[] point;
int[,] x = new int[,] {{0,-1},{1,0},{0,1},{-1,0}};
point = this.goal;
this.maze[point[1],point[0]] = '*';
while (this.dist[point[1],point[0]] > 0) {
for (int i = 0; i < x.GetLength(0); ++i) {
if (this.dist[point[1],point[0]]-this.dist[point[1]+x[i,1],point[0]+x[i,0]] == 1) {
if (this.dist[point[1],point[0]] > 0) {
this.maze[point[1]+x[i,1],point[0]+x[i,0]] = '*';
point = new int[] {point[0]+x[i,0],point[1]+x[i,1]};
}
}
}
}
return this.maze;
}
public void print_maze() {
this.maze[this.start[1],this.start[0]] = 'S';
this.maze[this.goal[1],this.goal[0]] = 'G';
for (int y = 0; y < this.maze.GetLength(0); ++y) {
for (int x = 0; x < this.maze.GetLength(1); ++x) {
if (this.maze[y,x] == Maze.WALL) {
Console.Write('#');
} else if (this.maze[y,x] == Maze.PATH) {
Console.Write(' ');
} else if (this.maze[y,x] == 'S') {
Console.Write('S');
} else if (this.maze[y,x] == 'G') {
Console.Write('G');
} else if (this.maze[y,x] == '*') {
Console.Write('*');
}
}
Console.WriteLine();
}
}
public static void Main() {
Maze maze1 = new Maze(15, 15);
maze1.set_maze_boutaoshi();
maze1.set_start_goal(new int[] {9, 5}, new int[] {9, 11});
maze1.set_dist_dfs();
maze1.set_shortest_path();
maze1.print_maze();
}
}
今回は、以下のように出力される。
###############
# # # # #
### # ### ### #
# #
# ### ##### # #
# # ****S# # #
# ###*####### #
# # *** # #
##### #*##### #
# #* # #
# #####*### # #
# # **G# # #
### ### ##### #
# # # #
###############
参考
深さ優先探索 - Algoful
深さ優先探索(DFS)とは子のないノードにたどり着くまで優先的に探索を繰り返すアルゴリズムです。スタック(FILO)を利用して探索を行います。迷路探索のシミュレーションで視覚的に理解できます。C#の実装サンプルがあります。
[Python] 深さ優先探索で迷路を解く
深さ優先探索 深さ優先探索(Depth First Search)は 、グラフを始点から一番奥の末端まで一直線…
DFS (深さ優先探索) 超入門! 〜 グラフ・アルゴリズムの世界への入口 〜【前編】 - Qiita
0. はじめに --- グラフ探索の動機現代ではコンピュータはとても身近なものになりました。コンピュータの用途としてはシミュレーションなどの大規模計算を行う人工知能をつくるアプリを開発する…